On differentiation of Lebesgue double integrals
نویسندگان
چکیده
منابع مشابه
The Riemann and Lebesgue Integrals
§1 Preliminaries: Step Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 §2 Riemann Integrable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 §3 Lebesgue measure zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 §4 Definition and Properties of the Lebesgue Integral . . . . . . . . . . 7 §5 The spaces L(R) and L(R) ....
متن کاملOn the Substitution Rule for Lebesgue–stieltjes Integrals
We show how two change-of-variables formulæ for Lebesgue–Stieltjes integrals generalize when all continuity hypotheses on the integrators are dropped. We find that a sort of “mass splitting phenomenon” arises. Let M : [a, b]→ R be increasing. Then the measure corresponding to M may be defined to be the unique Borel measure μ on [a, b] such that for each continuous function f : [a, b] → R, the i...
متن کاملOn double integrals over spheres
Formulae involving double integrals over spheres arise naturally in inverse scattering problems since the scattered data are measured in the space R x Sz x Sz. In this paper we derive a relation between differential forms on the space S"' x S"-' , and those on the space Z x S n-2 x S where Z is a real interval. Specifically, d( dq = sin"' 6 d6 d$ dv (t, 7) E S '-' x S '-' and (6, $, U) E Z x S"...
متن کاملDouble Integrals and Iterated Integrals
Corresponding material in the book: Section 15.2, 15.3. Note: We are omitting the question types from the book that require three-dimensional visualization, i.e., those that require sketching figures in three dimensions to compute volumes. What students should definitely get: The procedure for computing double integrals over rectangles using iterated integrals, the procedure for computing doubl...
متن کاملOn Differentiation of Integrals and Approximate Continuity
The following discussion is closely connected with Lebesgue's theorem that the derivative of an integral is equal to the integrand almost everywhere. I t is well known that in generalizing this theorem to higher dimensions, great care must be exercised in the choice of the systems of intervals or sets used for ^-dimensional differentiation. Lebesgue had already observed that arbitrary intervals...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamenta Mathematicae
سال: 1935
ISSN: 0016-2736,1730-6329
DOI: 10.4064/fm-25-1-209-216